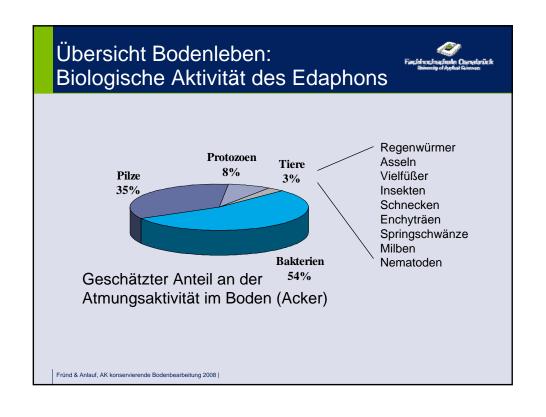
Veränderungen in der Bodenbiologie bei konservierender Bodenbearbeitung

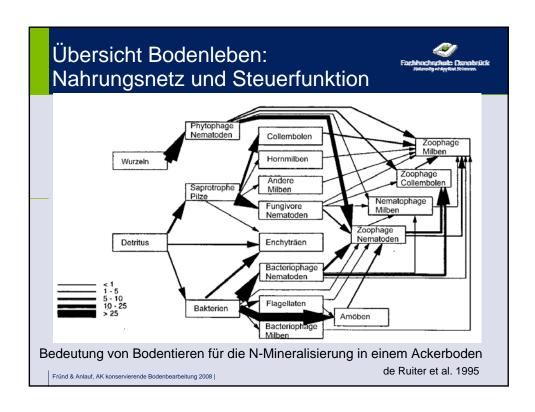
Heinz-Christian Fründ, Rüdiger Anlauf, Stefan Schrader

Bodenkunde, Bodenbiologie, Ökotoxikologie

Fakultät Agrarwissenschaften & Landschaftsarchitektur

Fachhochschule Osnabrück



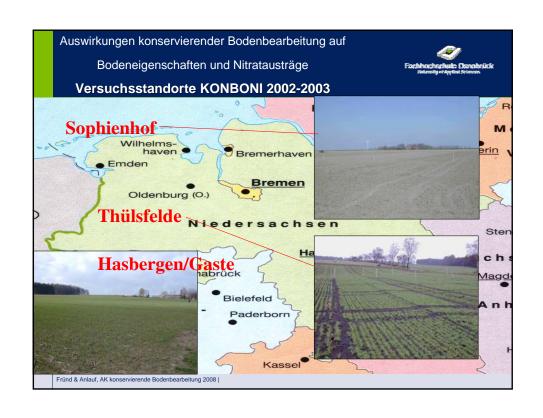

Gliederung

- 1. Übersicht Bodenleben
- 2. Effekte auf Mikroorganismen
- 3. Effekte auf Regenwürmer
- 4. Was leisten Regenwürmer?
- 5. Schlussfolgerungen

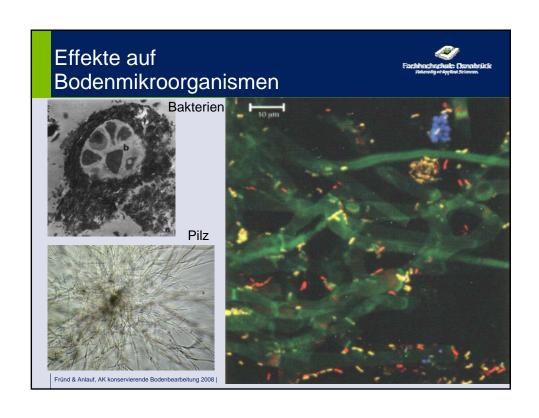
Übersicht Bodenleben: Leistungen der Bodenorganismen

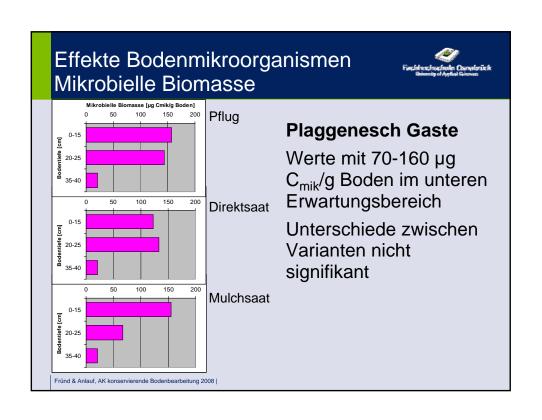
Abbau / Beseitigung des Bestandesabfalls

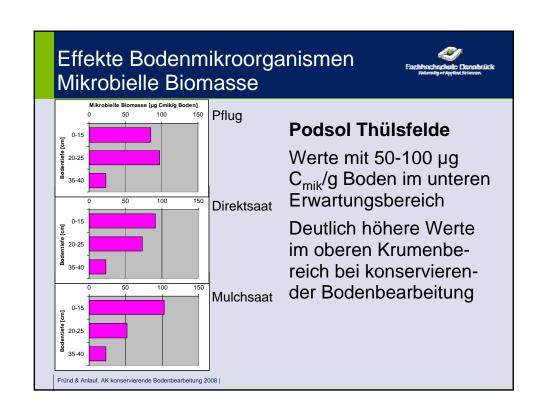
- Einmischen in den Boden: Regenwürmer
- Mineralisierung: Bakterien und Pilze

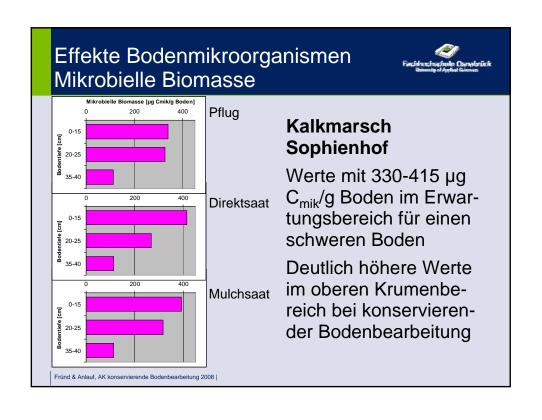

Aufbau / Stabilisierung der Bodenstruktur

- Porensystem für Drainung und Belüftung: Regenwürmer, Pflanzenwurzeln
- Stabile Krümel und Aggregate: Mikroorganismen und Bodentiere

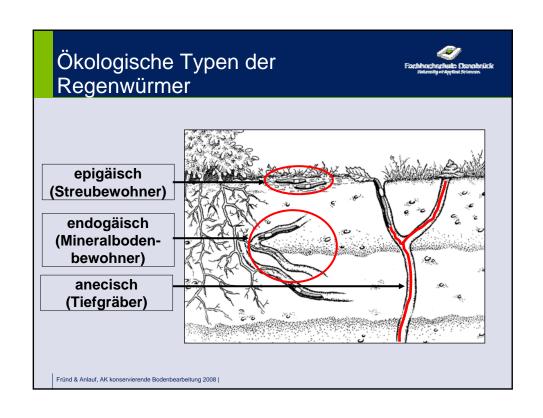

Stickstoffumsetzungen

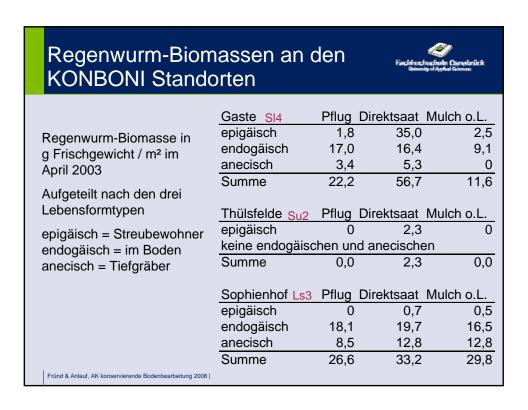

- Nitrifikation (Nitratbildung): Bakterien
- Denitrifikation (Emission von Lachgas, N₂): Bakterien


Regulierung von Schadorganismen: Edaphon gesamt



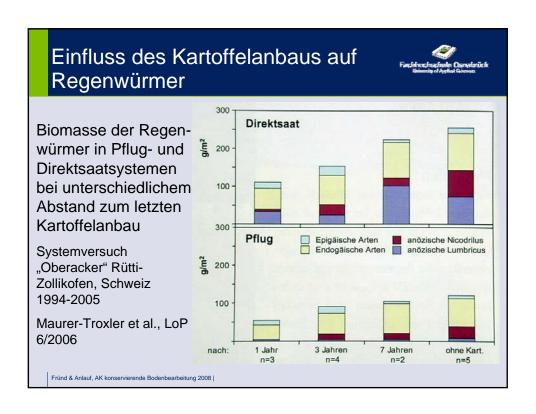
	KONBONI-Standorten					
Standort (Bodenbearbeitung)	Boden	Versuchsdauer im Jahr 2002				
Sophienhof (P, D, M)	Kalkmarsch Ls3	4 Jahre (seit 1998)				
Thülsfelde (P, D, M)	Podsol Su2	1 Jahr (seit 2001)				
Gaste	Plaggenesch Sl4	1 Jahr (seit 2001)				


Effekte Bodenmikroorganismen Fazit



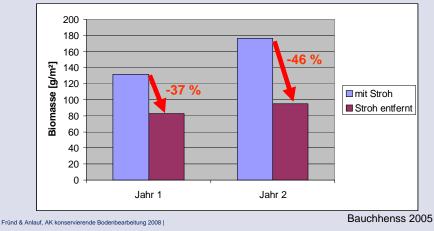
Bei konservierender Bodenbearbeitung...

- ...konzentriert sich die mikrobielle Aktivität auf die obere Bodenschicht.
- ...herrscht in der Unterkrume meistens geringere mikrobielle Aktivität im Vergleich zu gepflügtem Boden.
- ...Über die gesamte Pflugtiefe ist oft kein Effekt erkennbar.
- ...Der Anteil Streu zersetzender Pilze nimmt im Vergleich zu Bakterien zu



Regenwürmer im Versuch Gaste

Regenwurmbiomassen [g FG / m²] in der Pflug- und der Direktsaatvariante im April von 2003 bis 2008


Jahr	Pflug	Direktsaat	D/P
2003	22,2	56,7	2,6
2005	51	74	1,5
2006	12	11	0,9
2007	6	20,5	3,4
2008	12	33	2,8

Wirkung von Nahrungsentzug auf den Regenwurmbesatz

Regenwurm-Biomasse nach 5-jähriger Frässaat normal und nach Entfernen des gesamten Weizenstrohs (1. Jahr) und Körner-Maisstrohs (2. Jahr)

Effekte auf Regenwürmer Fazit

Bei konservierender Bodenbearbeitung...

- ...kommt es zu einer erheblichen Vermehrung der Regenwürmer (Verdopplung der Regenwurm-Biomasse bei Direktsaat im Vergleich zum Pflug)
- ...nehmen vor allem an der Oberfläche fressende epigäische und anecische Regenwurmarten zu.
- ...Ursachen des Effekts sind die verringerte Störung des Bodens und das verbesserte Nahrungsangebot an der Bodenoberfläche.

Was leisten die Würmer? - Strohabbau

Strohabbauversuch Wernborn (Friebe & Henke 1991)

Strohhäcksel (entspr. 60 t/ha) in Netzbeuteln auf den Boden

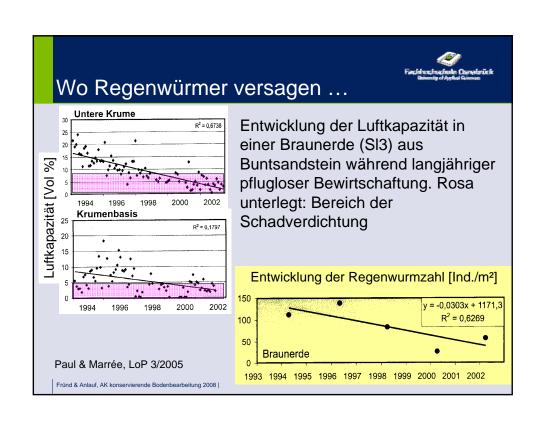
Enge Maschen: kein Zugang für Regenwürmer Weite Maschen: für Regenwürmer zugänglich Versuchsdauer: eine Vegetationsperiode

Fründ & Anlauf, AK konservierende Bodenbearbeitung 2008

Was leisten die Würmer? - Strohabbau

Strohabbauversuch Wernborn (Friebe & Henke 1991)


Strohhäcksel (entspr. 60 t/ha) in Netzbeuteln auf den Boden


Enge Maschen: kein Zugang für Regenwürmer Weite Maschen: für Regenwürmer zugänglich Versuchsdauer: eine Vegetationsperiode

Boden- bearbeitung	Strohabbau enge Beutel	Strohabbau weite Beutel	Regenwurm Biomasse
Pflug	20 t/ha	25 t/ha	38 g/m ²
SR Grubber	20 t/ha	30 t/ha	62 g/m²
FR Grubber	20 t/ha	32 t/ha	62 g/m²
Direktsaat	20 t/ha	40 t/ha	176 g/m²

Schlussfolgerungen

- ➤ Bodenbiologischer Haupteffekt: Förderung der Regenwürmer (v.a. Tiefgräber und Streufresser).
- Regenwürmer sind Schlüsselorganismen und wirken auf Bodeneigenschaften und die übrigen Bodenorganismen ein.
- Geringere Gunstwirkung der konservierenden Bodenbearbeitung, wo Regenwürmer von Natur aus selten sind.
- Mikroorganismen reichern sich in oberer
 Krumenschicht an, und gehen in unterer Krume
 zurück Bilanz häufig = Null

